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This technical report is a companion document to our white paper “Towards Trustworthy Large Language
Models in Industry Domains” [1], and complements the full stack technology of large language models.
We release a large language model to the open source community, named INF-34B, under an INF license
that is friendly to research and commercial use. INF-34B has 34 billion parameters with a context
window length of 32K and is trained on about 3.5T well-processed tokens from our curated English
and Chinese bilingual corpus. In the report we present training details and report the results of model
evaluation on widely used benchmarks. Compared with open-source models of comparable size, INF-34B
not only provides competitive performance in the OpenCompass evaluation, but also has impressive
potential in both the finance and healthcare domains. In addition to its outstanding comprehensive
capacities, the quantized INF-34B runs on low-resource graphics cards with negligible accuracy loss,
which helps it be suitable for low-resource applications.
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1. Introduction

Large language models (LLMs) have attracted widespread attention from both research and industry
communities, since OpenAI launched ChatGPT in November 2022. This breakthrough has been widely
applied to chatbots for customer service, language translation, coding copilot, and creative writing.
Natural language becomes a direct interactive interface between humans and machines.

Inspired by the scaling law of LLMs [2], recent efforts have focused on improving model accuracy by
pretraining much larger models in terms of parameters and training data, such as Llama-3 family
trained on 15 trillion tokens [3], and the Nemotron-4 340B trained with 9 trillion tokens [4]. Though
the principle still applies that a larger model achieves better general performance, it is critical to trade-
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off between deployment overhead and model performance in practical applications. The hardware
requirement for deploying the Nemotron-4 340B model is 16xA100 80GB, i.e. two nodes of A100
80GB, as recommended by [4], while deploying the Llama 3 70B model requires at least 2xA100
80GB. In terms of return on investment, a compact model of competitive performance is preferred.

In many scenarios, we only need an expert in a specific domain rather than an all-around generalist.
For instance, financial analysts lack of expertise in medicine and biology, which does not impede their
performance in analyzing financial data to make investment recommendations. If we are looking for
deep expertise in a specialized field, it is feasible to do continuous training on a strong pre-trained
model to enhance domain knowledge in order to gain superior performance.

To support the continued adoption of low-resource LLMs or domain-specific LLMs across the open
source community, we release INF-34B-Base and INF-34B-Chat as open-source models with a permis-
sive license for both research and commercial use.

We select the public OpenCompass [5] for model evaluation to ease the reproducibility of the metrics.
Both the base and chat models are evaluated on multiple dimensions, such as general knowledge,
reasoning, math, and coding. We also test the chat model on the instruction-following and long-context
ability. To evaluate model potentials in industry domains, we run tests on two domain-specific datasets
CFA and USMEL for finance and healthcare respectively. Figure 1 highlights the accuracy of the
INF-34B models across selected tasks. We chose two open-source models of similar size as comparison
baselines. As shown in Figure 1(a), our base model INF-34B-Base is competitive with the baseline
models on reasoning tasks like BBH and HellaSwag, mathematics tasks like GSM8K and MATH, and
coding tasks like HumanEval and MBPP. In both mathematics and coding tasks, INF-34B-Base shows
very strong performance, which is welcome in many real-word applications, such as financial analysis.
In Figure 1(b), the chat model INF-34B-Chat yields competitive results on four instruction-following
benchmarks, including MT-Bench, AlignBench, IFEval and Arena Hard, and a superior score on
average on the LongBench benchmark in long context evaluation. In Figure 1(c)，INF-34B-Chat
achieve comparable performance with the double-sized model on the two domain-specific test sets,
CFA and USMEL.

To further improve domain capabilities, it is encouraged to conduct domain-specific continuous train-
ing [1]. More importantly, we propose to integrate neural symbolic systems with LLMs, leveraging
LLMs for fast “black-box” probabilistic predictions while also supporting “white-box” logical reason-
ing. This integration provides a “gray-box” approach to developing trustworthy LLMs for industrial
applications. In Figure 1(c), the scores of INF-trustworthy, our proprietary trustworthy LLMs, quoted
from [1], show a significant improvement over the strong baseline models. For more information on
domain-specific data preparation and continuous model training, see [1].

Overall, our open-source models deliver competitive performance in all evaluations and show im-
pressive potential in both the finance and healthcare domains. We also report the performance of
the quantized chat model in Appendix G, and find that it is comparable in accuracy to the original
chat model, but requires one-third less VRAM for deployment and fits on a GeForce RTX™ 4090 GPU.
We believe that INF-34B strikes a good balance between performance and cost and can serve as a
general-purpose solution for low-resource applications today.

Below is a summary of our contributions.

• We provide comprehensive details about our model pretraining and alignment, including
high-quality data pipeline, instruction data preparation, and quantization results etc.

• We demonstrate superior performance of the INF-34B models on the public OpenCompass
benchmarks by comparing against two competitive open-access LLMs of comparable model
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Figure 1 | Result comparison of INF-34B-Base and INF-34B-Chat. See evaluation details in Section 2.3,
Section 3.3.1 & Section 3.3.3, and Section 3.3.2, respectively. In (a), the average of MMLU and
CMMLU is used for the score of knowledge, the average of BBH and HellaSwag for Reasoning, the
average of GSM8K and MATH for Math, and the average of HumanEval and MBPP for Coding, as in
Table 3. In (b), the score of Instruct Following is the average of MT-Bench, AlignBench, IFEval and
Arena Hard, as in Table 5 where the scores of MT-Bench and AlignBench are converted to 100 scale.
The score of Long Context is the average score of all tasks as in Table 7. In (c) the scores are mainly
from Table 6 and the scores of INF-Trustworthy are of our proprietary LLMs cited from [1].

size.1
• We release the INF-34B models, including INF-34B-Base and INF-34B-Chat, under a permissive

license to facilitate commercial applications, especially low-resource scenarios.2

The remaining of the report is organized as follows. In Section 2, we introduce pretraining details
and evaluate the resulting INF-34B-Base. In Section 3, we report alignment details including instruct
tuning, RLHF, safety and long-context, along with the evaluation results of INF-34B-Chat. In Section
4, we conclude and discuss future work.

2. Pretraining

2.1. Data Pipelines

This subsection details our data-cleaning pipeline, including the general, domain, and code data
pipelines. The general data pipeline involves general processing methods. For the domain data of
interest, e.g., math, wiki, code, we propose a domain-specific data pipeline to extract the domain data
from Common Crawl (CC). We also devise a code-specific pipeline to handle massive code data, since
the code data has proven its effectiveness in improving the model’s reasoning and comprehension
ability [6]. Using these pipelines, we obtained 3.5TB tokens of training data in Chinese, English, and
code.

2.1.1. General Data Pipeline

Our text cleaning pipeline mainly includes two stages: filtering and deduplication. Despite the
similarity with [7, 8], our aim is to reveal the details behind our pipeline, especially the details for
Chinese. The filtering involves language identification, URL filtering, and heuristic filtering rules.
The deduplication includes both fuzzy deduplication and exact deduplication techniques. The overall
process is illustrated in Fig. 2.

1The scripts to reproduce the evaluation results can be found at https://github.com/infly-ai/INF-LLM/.
2The model weight files can be accessed at https://huggingface.co/infly/.
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Filtering To ensure the quality and relevance of the training data for our model, we implemented a
comprehensive set of filtering rules tailored to both English and Chinese texts, based on the Redpajama
V2 [9]. These rules were designed to eliminate noise, redundant information, and low-quality samples
that could compromise performance. Filtering criteria were meticulously designed to account for the
linguistic differences of each language and the specific characteristics of each dataset. We show our
default filters below, whose thresholds are adjusted for high filter precision in the CC datasets. For
other datasets, we developed an annotation tool to efficiently curate specific settings. By applying
these comprehensive filtering rules, the low-quality data were likely excluded in our datasets. We
attach the rules in the App. A.

Deduplication Deduplication includes fuzzy deduplication and exact deduplication[10]. For fuzzy
deduplication, we used minhash [11] and locality-sensitive hashing (LSH) [12]. The process involves
the following steps. To standardize the text, we remove punctuation, lowercase the text, and convert
it into the NFD Unicode style 3. Then we tokenize the text using Jieba tokenizer 4 to adapt Chinese,
followed by applying 5-gram processing. We then use the 5-gram pieces to compute the 2048 minhash
values for each text. To compute efficiently, we employ a cluster of 20K CPU cores and carefully
reduce memory usage by elaborating the calculation steps. We used an LSH setting, where 2048
minhash values are split into 128 bands and 16 rows. We only keep one sample over the samples
colliding in any bands. Therefore, we can approximately deduplicate a pair in 80% Jaccard similarity
with a high probability of 99.7%. With these improvements, we can perform fuzzy deduplication for
a 10TB disk size of data in one hour.

For the exact deduplication stage, we used the suffix array algorithm [13], based on the project [14].
More specifically, we also performed the same text standardization, followed by tokenization using
our tokenizer (Sect. 2.2.1). We then used the suffix array algorithm to detect duplicated substrings
with 50+ tokens, where we used at least 20 workstations with 2TB of memory to maximize the
size of each data split per run. Note that we truncate the tokens into 16 bits to save the storage.
Then we remove the documents that contain more than 20% duplicating tokens as in [15]. From our
experimental results, we obtained evident improvement by using exact deduplication.

2.1.2. Specific Domain Data Retrieval

We propose an iterative, high-quality data retrieval method based on existing techniques [7, 16, 17],
which retrieves relevant data from the Common Crawl (CC) dataset for various target domains, used
in stage 3 training.

Code-like and Math-like Data Collection Despite the large amount of English code data, the
Chinese code data is relatively short, which hinder the coding ability in Chinese. To remedy this
problem, we adopted a similar method as in DeepSeekMath [16] to collect the code-like Chinese data.
Specifically, we firstly collect Chinese markdown data from GitHub and use the autonomous data
selection method [18] to filter and select 50,000 samples. With these samples as positive samples and
an equal number of negative documents randomly selected from CC, we train a classifier using fastText
with a vector dimension of 256, a learning rate of 0.1, a maximum n-gram length of 3, and a maximum
word occurrence of 3 for 3 epochs. Then we use the trained classifier to label all the CC documents
and group them by their domains (root URL, e.g., www.google.com). The domains containing more
than 10% positive documents are regarded as code-like candidates. Finally, we manual annotate

3https://en.wikipedia.org/wiki/Unicode_equivalence
4https://github.com/fxsjy/jieba
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Figure 2 | The figure illustrates the processing workflow and filtering procedures for Common Crawl
English data within our pipeline.

Figure 3 | The figure illustrates the processing of high-quality code-like and math-like recall. The
framework is illustrated on the left (a) with the annotation process (b).

these domains and refine the training data. Following our pipeline, we successfully identify the
domains that were not correctly classified by fastText, e.g., cloud.tencent.com/developers/article, into
our corpus. We perform several iterations to enrich and calibrate our datasets. After three iterations,
we obtain a collection of 72GB of Chinese code-like data. The distribution of the top websites in
code-like data is shown in Fig. 4 and detailed in App. B.1. A similar pipeline was used to select 20.6M
math-like document in Chinese (see details in App. B.2).

Wiki-like Data Collection Since the Wiki pages contains rich educative information, we also gather
the Wiki-like data from CC. The specific process is shown in Figure 5. We select 17% of Baidu-baike
data using filter rules as the seed data, which is used to train a fastText. FastText is used to filter all
CC samples whose URL contains “wiki”. Among these samples, 200,000 of them are then annotated
by GPT-4 for training powerful TinyBERT-4L [19] as a binary educational-level classifier. We apply
this classifier to annotate all filtered samples, then use the identified educational samples to retrain
a fastText model. This fastText is more robust in detecting Wiki-like data from diverse CC samples.
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Figure 4 | The distribution of the top domains in code-like data

More details can be found in App. B.3. Ultimately, we recall a total of 6.6 million high-quality Wiki-like
Chinese samples from CC.

2.1.3. Code Data Pipeline

To enhance the coding capabilities of the large language model, we carefully develop our code-specific
data pipeline to extract useful code data, which incorporates a substantial amount of source code text
into the training corpus, from all GitHub repositories up to November 2023. Based on general data
pipeline, the code pipeline includes processes of pre-processing, heuristic filtering, and deduplication.
The implementation details are displayed in App. C.

2.2. Model Training Details

2.2.1. Tokenizer

We use SentencePiece BPE with byte-level fallback as our tokenizer. During pre-tokenization, we split
numbers into 1 to 3 digits following GPT series[20]. For English tokens, we directly copy the first
65536 tokens from the GPT4 (cl100k_base) vocabulary and keep those in the languages of interest.
Then we train a tokenizer with vocabulary size of 30000 on a 25GB Chinese corpus sampling from
various data source to extract Chinese tokens[21]. We drop tokens that have more than 5 Chinese
characters as such tokens usually come from artifacts of a low-quality dataset or the signature of
websites. Finally, we add common unicode characters in web data such as emoji to further enhance
the compression rate. The resulting tokenizer has nearly 96536 tokens with decent compression rate
for English, Chinese and Code.
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Figure 5 | The figure illustrates the processing of high-quality Wiki-like recall.

2.2.2. Staged Pretraining

We train a 34B model from scratch with the purpose of studying the learning dynamics and demon-
strating the effectiveness of our data pipeline and training framework. The architecture choices of
INF-34B follows common practice of open-source Llama family [22]. Specifically, we opt Rotary
Embedding for positional encoding[23], SwiGLU for activation function, Grouped Query Attention
(GQA) and Layernorm with zero-centered gamma instead of RMSNorm for training stability.

Motivated by the idea of first training on a relatively large but less polished corpus to equip the
model with language understanding and world knowledge and then improving the model’s domain
knowledge and reasoning ability[24–26], our training process is split into 3 stages:

• Stage 1: The dataset mainly includes the curated web text and source code generated by our
data pipeline introduced in sections 2.1.1 and 2.1.3. Arxiv paper and Wikipedia data is also
added. In this early stage, we aim at larger data and higher diversity.

• Stage 2: For the second stage, we seek to gradually challenge the model with longer and more
complex texts. We up-weight long texts in the same data distribution of stage 1. We tune the
rope frequency and extend our context window to 32k with the belief that being capable of
utilizing information within larger context is crucial for the model to develop more sophisticated
comprehension of human knowledge.

• Stage 3: The final stage is composed of domain data recalled from Web text and synthetic
data. As introduced in section 2.1.2, we train Bert models to recall data related to different
targeted domains from CC and then employ a previously trained chat model to rewrite the
recalled web text into different formats such as question-answering or Wiki articles. We name
these data with the suffix “CC-recall”. In addition, similar to recent works[27, 28], we add a
small portion of open-source synthetic question-answering style alignment examples to facilitate
downstream evaluations and alignment. We perform 13-gram overlap detection against test
cases to decontaminate the data in this stage. By preliminary experiments we found this shift
of data distribution before alignment would enhance overall performance.

For each of the stages, we use a cosine decay scheduler which warms up 1000 steps to the peak
learning rate and then decays to the final learning rate. The detailed hyper parameters and data
mixture can be found in Table 1 and Table 2.
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Tokens batch-size learning rate rope-theta context-len
stage1 2T 8M 2.25e-4 ∼ 1e-4 10k 4k
stage2 1T 8M 1e-4 ∼ 1.5e-5 500k 32k
stage3 500B 8M 5e-5 ∼ 5e-6 500k 4k

Table 1 | Training process and hyperparameters

Category Datasets Percentage

NL Pre-train Common Crawl, Wikipedia
Arxiv, UltraTextbook 57%

NL Instructions QA-CC-recall, OpenHermes[29] 10%

Code
Github-source code
Starcoder V2[30], Code-CC-recall
Magicoder-OSS, Magicoder-Evol[31]

23%

Math OpenWebMath[32], Math-CC-recall
MetaMathQA[33], MuggleMath[34] 10%

Table 2 | Detailed mixture for final stage

2.2.3. Infrastructures

Our training cluster consists of 64 NVIDIA HGX H800 nodes and each node has 8 H800-80G PCIe
GPUs. We maintained an internal version of Megatron-LM-like training framework which compatible
with Megatron-Core[35], TransformerEngine, Flash Attention[36], Huggingface[37], etc.. And we
also deeply optimized the usability and efficiency for rapidly training and evaluation of Pretrain,
Reinforcement Learning and Supervised Fine-tuning.

For INF-34B model training, we employ fundamental tensor parallelism and interleaved pipeline
parallelism strategies[35], leveraging ZeRO[38] shared data parallelism with the gradient reduce-
scatter and parameter all-gather overlapping separately during the last and first steps of gradient
accumulation. We implement uneven bucket splitting of parameters to further enhance the overlap
ratio between communication and computation. To further accelerate training without any loss of
model accuracy, we pre-compute the rotary embedding matrix and compile the operation of applying
the rotary matrix to queries and keys with CUDAGraphs. We further optimize GPU memory by
accelerating the freeing of tensors occupied by NCCL tasks and increasing the hit rate of the CUDA
memory cache. Eventually, we could reach the peak of 500 TFlops per GPU node while training with
BF16 on 512x H800-80G PCIe GPUs.

For 32K long context further pretraining, we incorporate context parallelism with distributed flash
attention equipped with load balancing and communication / computation overlapping. We also em-
ploy an adaptive gradient checkpointing strategy to maximize resource utilization while maintaining
optimal 4D parallelism dimensions.

In training scenarios with non-causal loss mask and packed sequences, we use global token loss
averaging to ensure equal treatment for each token, thereby preventing training instability caused
by an imbalanced question/answer ratio. Additionally, we adapt to use the DeepSpeed-Ulysses[39]
context parallel for about 20%+ better throughput on account of the inefficiency of distributed flash
attention for packed long sequences without a standard causal mask.
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2.3. Base Model Evaluation

Results In this section, we evaluate our model on several academic benchmarks, and then compare
with other similar-sized open-access models. Selected tasks and their category are listed as follows:

• Commonsense reasoning: HellaSwag (0-shot) [40] BBH(3-shot) [41]
• Popular aggregated benchmarks: MMLU (5-shot) [42] CMMLU(5-shot) [43]
• Math related: GSM8K(4-shot) [44] , MATH(4-shot) [45]
• Code: Pass@1 scores on HumanEval (0-shot) [46], Pass@1 scores on MBPP (3-shot) [47]

Although most of our training data are public or synthetic, Table 3 shows that INF-34B maintains
a good balance between the general capabilities of LLM such as common sense, world knowledge,
mathematics, and coding. We attribute this effectiveness to our data pipeline, which generates
information-dense data while still remaining natural and diverse in style. See Appendix H for broader
evaluation results.

Model MMLU CMMLU GSM8K MATH HumanEval MBPP BBH Hellaswag
Qwen1.5-32B 73.60 81.87 72.86 36.80 44.51 51.00 70.60 82.03
Yi1.5-34B 77.86 81.85 80.06 33.88 47.56 65.60 74.83 81.57
INF-34B 76.11 80.08 83.02 38.34 65.24 64.00 71.20 83.32

Table 3 | Results of the base models on commonly used benchmarks.1

Discussion On the journey of pretraining INF-34B model, we are intrigued by several unanswered
questions. Despite thorough investigation is mission impossible, preliminary understanding on these
questions provides good guidance for practice. In this section, we introduce some of our practical
decisions and how we made them.

• Instruction Data in Stage 3: Note that INF-34B and several recent works [27, 28] choose to
mix benchmark-style instructions in the last pre-training phase, but whether this practice is
beneficial or just overdrafting earnings of the alignment stage remains a mystery. We conduct
preliminary experiment on a 1.5B model trained on 500B code with the belief that the domain of
code can be relatively more controlled for ablation. For both runs, we conduct continued training
first, then SFT for 4 epochs, evaluating after each epoch, and report the best result. A slightly
better result is observed when the 50% code instructions are consumed in continued training
than when training all of these data in the SFT phase, as illustrated in Table 4. We speculate
this improvement is attributed to less drastic shift of data distribution between pretraining
and instruction-tuning. Notably, alignment data preparation usually requires extensive quality
control thus adding unpolished instructions in this stage is cost-effective.

• Training in FP8: The introduction of 8-bit floating point (FP8) precision with NVIDIA Hopper
GPUs marks a significant advancement, offering enhanced performance while maintaining simi-
lar or reduced memory utilization during both the training and inference phases. Additionally,
NVIDIA has released a Python library named Transformer Engine 5, which provides a suite of
highly optimized building blocks for Transformer architectures. By integrating the Transformer

1To facilitate reproduction, the results of common benchmarks are generated by Opencompass [5] except coding tests.
Humaneval and MBPP are evaluated using https://github.com/deepseek-ai/DeepSeek-Coder/tree/main/Evaluation

5TransformerEngine: https://github.com/NVIDIA/TransformerEngine
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Model Continued Training SFT humaneval mbpp

1.5B 10B source code
No instructions 50M instructions*4 37.80 35.00

1.5B-warmup 10B source code
25M instructions*4 25M instructions*4 42.07 38.60

Table 4 | Impact of Instruction Warm-up.

Engine into our training framework, we observed throughput improvements of approximately
30% to 50% compared to BF16 precision training.
Due to the limited practical guidance on the optimal use of FP8 training, the following effort is
taken during our training process: We developed a conversion tool to seamlessly switch between
the BF16 and FP8 training states, allowing flexible utilization of FP8 training as needed. Our
strategy involves enabling FP8 in the early stages of training when precise gradient direction
estimation is less critical. We continuously monitor training dynamics to determine appropriate
switch points. We observed a moderate spike in the loss curve during the first iteration when
transitioning to FP8 training from a BF16 checkpoint. This phenomenon might be due to the
improper initialization of the FP8 states. To mitigate this, we use the samples from the first
batch to ”warm up” the FP8 states, resulting in a smooth and stable loss curve thereafter, as
illustrated in Figure 6. When we observed the instability in training, we would switch to BF16
training to address this issue. Figure 7 illustrates this case.
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Figure 6 | Loss curves under various training precision and initialization schemes.
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Figure 7 | Training loss curves from 93k to 103k iterations, with different precision settings. BF16
continue training resumes from the FP8 checkpoint at 94k iteration.

3. Alignment

3.1. Supervised Fine-tuning

We initiate the model training with Supervised Fine-Tuning (SFT), which equips the model with
fundamental capabilities for chat-like interactions and following instructions, setting the stage for
its adaptation to various domain-specific applications. The effectiveness of SFT hinges on three
critical factors: the quality of the data, the strategy for data partitioning, and the optimization of
hyperparameters. These findings are also supported by several literature [48–54] . High-quality
instructional data is pivotal, as it not only enhances the model’s response quality but also substantially
reduces hallucination. Strategic data partitioning allows us to balance task-specific performance and
overall chat functionality, an essential consideration for models expected to operate across different
domains. Additionally, the tuning of hyperparameters also plays a crucial role in achieving robust
generalization performance. After the whole SFT pipline, we can provide a comprehensive chat-based
LLM with known instruction data distribution for subsequent alignment using reinforcement learning.
We leave the details of methods for creating high-quality prompts in Appendix D, and the ChatML
template specification in Appendix E.

In our preliminary studies, we observed that the acquisition of reasoning capability is more chal-
lenging than the acquisition of other capabilities, but reasoning is orthogonal to other capabilities,
i.e. augmenting the dataset with a substantial proportion of reasoning-related instructions did not
adversely affect the performance on other capacities. Therefore, we strategically incorporated a
mixture ratio approaching fifty percent for reasoning instructions and preparing more reasoning
related instruction data for last stage of pretraining introduced in Section 2.2.2.

To facilitate the updates of the SFT dataset and ensure that each update progressively enhances
the target benchmarks without negatively impacting the capabilities in other domains, we have
reorganized and restructured 12 comprehensive categories to represent the model’s abilities. The
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Figure 8 | The data distribution overview of instruction dataset for SFT.

categorical and lingual proportions of the instruction dataset used for INF-34B are illustrated in Figure
8.

3.1.1. Long Context

With an increasing number of large models supporting a context length of up to 32k tokens, the
potential applications of these models in tasks such as long document comprehension, content creation,
code completion, and specialized domain content analysis have expanded significantly. However,
training models with such extensive context windows requires the gathering of substantial amounts
of high-quality annotated data, which presents considerable challenges and resource demands.

When constructing SFT datasets for long context, several critical factors should be taken into con-
sideration. In terms of the data sources and preprocessing of data, careful selection of sources can
ensure they are diverse and representative of various domains and styles; systematical preprocessing
of raw data is paramount to the success of construct supervised finetuning dataset of high quality.
Diversity in tasks represented within the dataset is essential to train models capable of addressing
various natural language understanding and generation tasks. Furthermore, the distribution of text
lengths within the dataset should reflect real-world scenarios to effectively train models for handling
different document lengths.

Leveraging large language models with extended context capabilities for tasks involving long texts
requires meticulous planning in data sourcing, raw data quality, length distribution, task diversity.
Details of our long context data sources and task types can be found in Appendix F. The length
distribution of our long context SFT dataset is as follows: 37.7% of the dataset comprises documents
shorter than 8k tokens, while 40.5% fall within the range of 8k to 16k tokens. The remaining 21.8%
of the dataset consists of documents ranging from 16k to 32k tokens in length. This distribution of
document lengths provides a comprehensive sampling across various sizes, ensuring robust training
and evaluation in our SFT framework.

3.1.2. Safety

To improve the security of LLMs and better align them with human values, providing users with
safe and accurate information, we have implemented a series of measures throughout the model
training process. These measures include the development of a comprehensive safety taxonomy, the
detoxification of corpus, safety alignment, and rigorous safety evaluations. These efforts collectively
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ensure that the final model adheres to the highest standards of safety and reliability.

In the SFT stage, we integrated nearly 25K safety related question-answer pairs into the SFT datas.
By adjusting the data ratios and training strategies, we ensured that the introduction of safety data
enhances the model’s safety without negatively impacting its general capabilities. Using the model
trained in SFT stage, we sampled multiple responses to the prepared safety questions and manually
scored each response for safety and helpfulness. We also created pairwise comparison data, manually
annotating which response was safer and more helpful. This data was then used to train our safety
reward model. During the next reinforcement learning (RL) phase, refer to Section 3.2, we employed
both safety rewards and helpfulness rewards to increase the likelihood that the model generates safer
and more helpful responses.

For risky questions, refusing to answer is always the safest option. However, excessive refusals
can significantly degrade user experience and noticeably impact the model’s general capabilities.
Therefore, when evaluating the overall safety performance of the model, it is essential to balance the
risk rate and the negative impact on general capability. Our safety evaluation focusing on both the
overall risk rate and the unreasonable refuse rate of the model. The risk rate refers to the proportion
of responses containing unsafe content, while the unreasonable refuse rate indicates the proportion of
instances where the model incorrectly refuses to answer questions that should be answered normally
or positively guided. Only when both metrics are sufficiently low does it indicate that the model’s
overall safety is good, with minimal negative impact on its general capabilities. On our proprietary
safety dataset of about 2000 test samples, our final INF-34-Chat reduces harmful proportion from
5.26% to 4.81% and unreasonable rejection rate from 6.24% to 4.35% after RL training compared
with the SFT-only model.

3.1.3. Training Details

The stable dataset D we used for model training includes approximately 0.6M instructions, with its
distribution outlined in Figure 8. Given the dynamic nature of data distribution and volume during
the SFT across different application scenarios, our emphasis shifts from training epochs to specific
training steps. The stable version of our model undergoes 1,200 training steps with a batch size of 32
and employs a cosine learning rate schedule ranging from 5e-5 to 1e-6. Additionally, we implement a
200-step learning rate warmup to ensure stability and a 0.1 dropout rate in hidden layers to mitigate
overfitting.

Consistent with previous studies [48, 49], we perform the typical SFT in an autoregressive manner
across all assistant response prompts y with total ) tokens, without optimizing the loss for system
and user prompts x:

min
\

−E(x,y)∼D

)∑
7=1

log>\(G7 |y<7, x). (1)

To enhance training efficiency, we pack the prompts into 32K context windows, treating each packed
instructions as a single data point and resetting attention mask exclusively for each instruction
data separation. During experiments, we observed that integrating long context instruction data
destabilized the SFT training due to imbalanced training tokens across different data points. To
address this, we developed a balanced packing algorithm that equitably distributes the learnable
tokens among data points and adjusted the loss aggregation from data points level to tokens level.
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3.2. RLHF

We further align our LLM using Reinforcement Learning from Human Feedback (RLHF) following
the Supervised Fine-Tuning (SFT) phase. RLHF entails fitting a reward model to a dataset reflecting
human preferences and then optimizing the policy to elicit high-reward responses while minimizing
deviation from the established SFT policy. In this section, we detail the technical specifics of our RLHF
stage and highlight key differences from previous implementations.

3.2.1. Reward Model

Reward models, which guide policy improvement in the RLHF (Reinforcement Learning from Human
Feedback) procedure [55], play a crucial role in model alignment. These models are instrumental
in ensuring that the LLM’s responses adhere to human ethical standards and preferences, covering
aspects like safety, helpfulness, and mathematical reasoning. Unlike the common pairwise comparison
of two model responses, as seen in RLHF methods like DPO [56] and PPO [57], we ask annotators to
score each response individually on a scale from 0-10, following predefined guidelines. In instances
where responses receive equivalent scores, annotators are further asked to determine which response
aligns better with the task requirements.

Our reward model is composed of building a linear projection head on top of the last hidden state
of the base model. The objective function includes the squared loss between the output value and
the score, plus a pairwise loss that is applied only when the ground truth scores are tied. This
approach involves directly regressing on the helpfulness or safety scores and relying on Bradley-Terry
(BT) model assumptions to reconstruct the pointwise reward when the differences between two
responses are nuanced. Reflecting on the trade-offs between safety and helpfulness as documented
in previous studies [22, 58], we train separate models for safety and helpfulness to fine-tune our
reward alignment strategy.

3.2.2. RLHF Training

Given the reward models, the subsequent step is to train our LLM with reinforcement learning
algorithm. We leverage the standard off-policy REINFORCE [59] method rather than PPO or DPO-like
methods. We update our parameter in the direction of :

E?∼?>==:E0∼c@4 5 min

(
c\

c@4 5
, d

)
∇ logc\(0|?)

( @(0|?) − @̄(?)
@AB3 (?)

)
− _1∇E?∼?>==: !(c@4 5 | |c\) − _2∇E?∼?A 5 B !(cA 5 B | |c\),

where c\ is the current LLM that we aim to optimize, ? is a question sampled from our question pool,
and 0 is the corresponding answer sampled from the reference policy c@4 5 . The term c\

c@4 5
represents

the importance sampling ratio to ensure the objective function is an unbiased estimator with respect
to the corresponding on-policy objective function. The ratio is typically clipped to reduce variance,
particularly when c\ deviates significantly from c@4 5 and the sequence is long. Additionally, we include
two KL divergence terms, i.e.,  !(c@4 5 | |c\) and  !(cA 5 B | |c\), to ensure that the learned abilities do
not degenerate during the RLHF stage. The reward @(0|?) is obtained through either the reward
model or verifiers such as ground truth label matching in GSM8K and unit tests in Python programs.
To reduce the variance of the policy gradient, @̄(?), known as the baseline, is estimated by averaging
the scores of the responses. Furthermore, the reward is normalized by @AB3 (?), which is the standard
deviation of responses’ rewards given a question. Generally, we sample 10 responses for each question
and use d = 1.0, _1 = 0.2, and _2 = 1 in our objective function. We perform several iterations of the
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off-policy REINFORCE, transitioning the policy from c0 (the SFT model) to c1, c2, and so on. In each
iteration 7, we set c@4 5 = c7−1. This multi-iteration strategy is necessary to progressively enhance both
the helpfulness and safety of the model.

3.3. Evaluation

In this section, we present the performance results of our chat model and other LLMS on various
standard benchmarks, as well as two domain-specific benchmarks. We observe some discrepancies
between our evaluation results of other open-source LLMs and the results reported in their respective
technical reports. These discrepancies may be attributed to variations in the prompt formulation and
post-processing procedures employed during evaluation.

3.3.1. Instruction-Following Benchmarks

We conducted evaluations using several automatic instruction-following benchmarks [60–63] and
present the zero-shot results in Table 5, along with the zero-shot results of two mathematics tasks.
These results reflect the chat model’s ability to accurately follow instructions without prior examples.
Our Inf-34B-Chat model is comparable to other open-source models of similar size.

Model MT-bench AlignBench IFEval Arena-Hard GSM8K MATH
Qwen1.5-32B-Chat 8.3 7.1 49.54 24.2 81.42 42.28
Yi1.5-34B-Chat 8.5 7.2 58.04 42.6 79.45 54.06
INF-34B-Chat 8.3 7.1 59.70 43.1 84.04 51.48

Table 5 | Zero-shot results of the chat models on instruction-following and mathematics benchmarks.

3.3.2. Industry Domain Benchmarks

We also evaluated our model’s proficiency in the finance domain using the Chartered Financial Analyst
(CFA) exam and in the medical domain using the United States Medical Licensing Examination
(USMLE).

The USMLE is a rigorous, standardized examination that all physicians must pass to practice medicine
in the United States. It comprises three steps, each with a specific focus and unique objectives,
collectively ensuring a comprehensive assessment of a medical professional’s competency. Step 1
evaluates the foundational medical knowledge of medical students; Step 2 assesses basic clinical
knowledge; and Step 3 appraises advanced clinical knowledge and its application. Our model
demonstrated impressive performance on the USMLE, as shown in Table 6: achieving scores of 79.83
on Step 1, 77.50 on Step 2, 81.75 on Step 3, and an overall score of 79.70. These results significantly
surpass those of larger models, such as Qwen2-72B-chat, by a substantial margin.

CFA 2.0 is the Chartered Financial Analyst (CFA) exam dataset developed by the Shanghai Academy
of Artificial Intelligence for Science (SAIS). It contains 200 hand-selected problems from each of the
Level I and Level II CFA exams. Table 6 demonstrates that our model excels in financial analysis and
surpasses other models.

3.3.3. Long Context Evaluation

Longbench LongBench[64] comprises 21 datasets spanning 6 task categories: Single-document
Question Answering (Single-doc QA), Multi-document Question Answering (Multi-doc QA), Summa-
rization, Few-shot Learning, Synthetic tasks, and Code Completion. These tasks collectively cover
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Model CFA 2.0 USMLE Step 1 Step 2 Step 3
Qwen2-72B-Chat 62.00 70.53 68.07 70.83 72.26
Qwen1.5-32B-Chat 35.50 58.70 52.90 55.80 66.40
Yi1.5-34B-Chat 42.50 55.84 53.78 50.83 62.04
INF-34B-Chat 62.75 79.70 79.83 77.50 81.75

Table 6 | Results of the chat models on finance and healthcare benchmarks.

essential domains in long-text applications. The datasets are bilingual, featuring both Chinese and
English languages, designed to assess models’ capabilities in bilingual long-text processing. Specific
results are provided in the Table 7. We used the same ID notation mentioned in LongBench for
convenience and run evaluation tasks via OpenCompass [5]. We didn’t test Yi1.5-34B as its context
window length is 4K, and cited the results of GPT-3.5 from [64]. Our model has demonstrated superior
performance on LongBench tasks compared to the equivalently scaled Qwen1.5-32B model [65].

NIAH(Needle in A Haystack) The Needle In A Haystack test [5, 66] is an evaluation method that
randomly inserts key information into long texts to form prompts for large language models. The test
aims to detect whether large models can extract such key information from extensive texts, thereby
assessing the models’capabilities in processing and understanding long documents.

The visualization of evaluation results of INF-34B-Chat and Qwen1.5-32B-Chat are shown in Figure 9.
Both INF-34B-Chat and Qwen1.5-32B-Chat performs well across context window lengths up to 32k
on Single-Needle Retrieval Task [5].

4. Conclusion and Future Work

We released INF-34B, a family of large language models having 34B parameters, to the open source
community, along with a permissive license to facilitate both research and commercial use. The INF-
34B models yield very strong performance on widely-used benchmarks. We also released evaluation
scripts to help reproduce the results. The INF-34B models with quantization support achieve a good
balance between performance and cost and can serve as a solution for low-resource applications.
Notably in two industry-domain tests CFA and USMEL, our model performs much better than two
equally sized open access models and is even comparable to a model of twice the size, while our
proprietary Trustworthy LLMs [1] achieve significant improvements further.

There are plenty of challenging explorations for future work. We continue to further enhance reasoning
capacities via neural symbolic computing along the direction outlined in [1] for trustworthy LLMs,
which introduces logical induction and deduction like System-II into the probabilistic predictions
produced by LLMs, and also produce theoretically unlimited high-quality synthetic data for continuous
model training. We delve into the structure of attention mechanisms to analyze the generation process,
and couple with symbolic AI to improve explainability and transparency in content generation. We
may explore alternative architectures for LLMs to address limitations in the attention mechanism. We
also plan to release a manual on prompt engineering as a guidance to help users explore the potential
of the released models.
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Tasks/Model ID GPT-3.5-Turbo-16K Qwen1.5-32B-Chat INF-34B-Chat

Single-Doc QA

1-1 23.6 21.2 30.7
1-2 43.3 43.7 44.4
1-3 52.3 52.5 52.5
1-4 61.2 65.0 62.1
Avg 45.1 45.6 47.4

Multi-Doc QA

2-1 51.6 57.1 58.3
2-2 37.7 43.2 49.7
2-3 26.9 34.0 32.6
2-4 28.7 27.3 32.1
Avg 36.2 40.4 43.2

Summarization

3-1 29.5 31.8 30.7
3-2 23.4 23.3 23.1
3-3 26.7 22.8 25.7
3-4 16.0 14.6 17.0
Avg 23.9 23.1 24.1

Few-shot Learning

4-1 68.0 50.0 78.0
4-2 91.4 88.9 92.3
4-3 41.7 36.0 45.7
4-4 29.2 35.5 48.0
Avg 57.6 52.6 66.0

Synthetic

5-1 4.5 5.8 2.0
5-2 71.0 98.0 98.5
5-3 77.5 98.0 100.0
Avg 51.0 67.3 66.8

Code
6-1 54.7 52.6 64.6
6-2 53.6 35.0 49.8
Avg 54.1 43.8 57.2

EN Avg 44.0 44.0 49.2
ZH Avg 44.5 47.4 52.7
All Avg 44.7 45.5 50.8

Table 7 | Results (%) on single-doc QA, multi-doc QA and summarization tasks, few-shot learning,
synthetic, and code tasks. ‘Overall’ is computed by the macro-average (the mean of ‘Avg’) over major
task categories. This is computed on English (EN) tasks, Chinese (ZH) tasks, and all (All) tasks, code
tasks are included in both languages.
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Figure 9 | Single-Needle Retrieval Task results of INF-34B-Chat and Qwen1.5-32B-Chat, where the
green color indicates successful retrievals and the horizontal axis indicates token length varying from
0K to 32K.
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A. Filters of General Data Pipeline

• Document Sentence Count: Documents containing only a single sentence were excluded.
• Document Word Count: Documents with fewer than 50 words were filtered.
• Mean Word Length: For English, we keep the documents with an average word length between

3 and 10. For Chinese, the range is from 1.3 to 10.
• Nonconsecutive Special Characters: Documents with more than 10% words containing

non-consecutive hash marks (#) or ellipses (...) were removed.
• Lines Ending with “read more”: For English, documents where more than 10% of lines end

with ellipsis words such as “...” and “read more” were excluded. For Chinese, the filter threshold
changes to 30%, and with additional ellipsis words, e.g., “更多”.

• Bullet Points: Documents where more than 90% lines start with bullet points were removed.
• Punctuation: Documents without punctuation marks were excluded.
• Numerical Words: Documents with more than 30% numeric words were filtered out.
• Unigram Entropy: Documents whose unigram entropy is less than 3 were excluded.
• Duplicate Lines: Documents with than 30% duplicated lines or 20% duplicated characters

were removed.
• Top N-grams: Documents whose most frequent 2-gram (3-4 gram) exceeded 20% (18%, 16%)

were filtered out.
• Duplicated N-grams: Documents where the most frequent 5-gram (6-10 gram) tokens occupy

more than 15% (14-10%) were removed. For Chinese, the thresholds are 60%.
• URL Blacklists: For all documents with URLs, we filter the documents when their URLs are in

the blacklist as introduced in [15].
• URL Block Words: We collected a list of NSFW block words, and remove the documents by

these words as in [15].
• Language Score: We perform language identification using FastText [67] and remove English

documents whose language score is below 0.65 and Chinese documents of 0.90.
• Non-alphabetic Words: Documents with over 50% of words not containing any English

alphabetic characters were removed. Different from 20% in [15], we tolerate more non-
alphabetic words to keep vast domain data. It is invalid for Chinese.

• All Caps Words: Documents with more than 50% of words in all caps were filtered out. It is
invalid for Chinese.

• Lorem Ipsum: Documents with more than 2% of ”lorem ipsum” characters were excluded. It
is invalid for Chinese.

• Stop Words: Documents with less than 2 stop words from [68] are moved. It is invalid for
Chinese.

• Bracketed Words: Documents with more than 10% words in full brackets (【】) were excluded.
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B. Details of Domain Data Pipeline

B.1. Code-like Data

We utilize the GPT-4 model and employ the Autonomous Data Selection method to acquire relevant
data from GitHub and the Common Crawl (CC). The Meta prompts used are shown below.

Figure 10 | The Meta Prompt for Selecting code-like seed from Github Markdown

Figure 11 | The Meta Prompt for Selecting math-like seed from Github Markdown and CC

The manual annotation of the URLs of the website is presented as shown in the table 8.

B.2. Math-like Data

The table 9 illustrates the distribution of Chinese code retrieved from Common Crawl in various
domains.
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Domain Prefix Tag

cloud.tencent.com %cloud.tencent.com/developer/article% Code
cloud.tencent.com %cloud.tencent.com/ask% Code
cloud.tencent.com %cloud.tencent.com/developer/information% Code
cloud.tencent.com %cloud.tencent.com/document% Code
my.oschina.net %my.oschina.net%blog% Code
ask.csdn.net %ask.csdn.net/questions% Code
www.cnblogs.com %www.cnblogs.com% Code
forum.ubuntu.org.cn %forum.ubuntu.org.cn% Code
q.cnblogs.com %q.cnblogs.com/q% Code
segmentfault.com %segmentfault.com/q% Code
segmentfault.com %segmentfault.com/a% Code
woshipm.com %woshipm.com/data-analysis% Code
zgserver.com %zgserver.com/server% Code
zgserver.com %zgserver.com/linux% Code
zgserver.com %zgserver.com/ubuntu% Code
juejin.cn %juejin.cn/post% Code
jiqizhixin.com %jiqizhixin.com/articles% Code
help.aliyun.com %help.aliyun.com/zh% Code
jyeoo.com %jyeoo.com% Math
www.haihongyuan.com %haihongyuan.com%shuxue% Math
www.03964.com %www.03964.com% Math
www.nbhkdz.com %www.nbhkdz.com% Math
9512.net %9512.net% Math
lanxicy.com %lanxicy.com% Math
bbs.emath.ac.cn %bbs.emath.ac.cn% Math
math.pro %math.pro% Math
mathschina.com %mathschina.com% Math
shuxue.chazidian.com %shuxue.chazidian.com% Math
shuxue.ht88.com %shuxue.ht88.com% Math

Table 8 | The manual annotation of code-like and math-like Chinese domains. We employ the ’%’ sym-
bol as a wildcard in our Pattern matching. For instance, the URL ’https://my.oschina.net/u/4/blog/11’
can be matched by the pattern ’%my.oschina.net%blog%’.

B.3. Wiki-like data

Heuristic rules for wiki data cleaning Specifically, we remove all samples shorter than 128 characters,
and use a keyword blacklist to remove web novels, company introductions, and biographies, while
retaining knowledge-rich and educationally significant data, particularly in the fields of medicine,
finance, and mathematics.

Details of fasttext model setting To accommodate fastText’s reliance on spaces for tokenization, we
use the byte pair encoding (BPE) tokenizer from INF-34B, which allows control over the vocabulary
size. The specific model training settings include: the open-source fastText library, a vector dimension
of 512, a learning rate of 0.1, a maximum n-gram length of 3, and a maximum word occurrence of 3.

Details of Constructing Fine-grained CC The Common Crawl (CC) dataset comprises an extensive
collection of web pages. Traditionally, our approach to processing CC data has been limited to filtering
and deduplication, which has hindered more advanced analysis of this vast dataset. To identify
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reliable and high-quality data across various domains, a more sophisticated processing method is
required. We propose a fine-grained division strategy for CC data. Initially, we segment the URLs in
all snapshots of the CC dataset by base URL (e.g., www.google.com is considered a base URL). We
count the occurrences of each base URL and rank them in descending order. Our findings indicate
that the top 2 million base URLs account for approximately 65% of the entire CC dataset. We
believe that annotating these base URLs with their type, topic, and language will provide valuable
insights. Although this method allows for a preliminary fine-grained segmentation of the CC data, it
may introduce some inaccuracies. Using this approach, we can extract most of the URLs related to
Wikipedia from the CC dataset. Additionally, we can obtain substantial data for any domain. In the
future, we will open source more details about this fine-grained CC data.

Wiki-like data annotation prompt To acquire educational content, we utilize a LLM API for annota-
tion, similar to the Fineweb-edu [69] approach.
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Domain Code Recall Ratio (%) Recall Count

blog.csdn.net 77.99 506457
cloud.tencent.com 44.03 148512
download.csdn.net 48.76 111634
www.csdn.net 76.85 106362
bbs.csdn.net 68.42 99497
my.oschina.net 73.41 80226
ask.csdn.net 92.03 69677
www.cnblogs.com 77.35 66153
blog.51cto.com 61.49 61845
support.microsoft.com 83.48 55295
www.oschina.net 61.22 54293
developer.aliyun.com 61.91 50812
zgserver.com 99.98 39592
forum.ubuntu.org.cn 42.21 37394
cn.depositphotos.com 95.69 35785
docs.amazonaws.cn 97.85 31155
yq.aliyun.com 49.05 30192
juejin.cn 78.21 29237
support.office.com 81.04 28386
zh.wikipedia.org 2.51 27996
experienceleague.adobe.com 83.62 27886
www.jianshu.com 12.72 25982
docs.vmware.com 85.29 25185
segmentfault.com 73.62 24877
www.infoq.cn 58.51 23804
wenjiangeshi.cn 99.92 21904
www.tripadvisor.com.tw 2.95 21828
www.03964.com 20.51 20793
blog.itpub.net 39.44 19841
linux.cn 53.08 19693
help.aliyun.com 74.44 19403
ithelp.ithome.com.tw 50.58 19293
androidcookie.com 99.63 18409
q.cnblogs.com 84.45 18319
aws.amazon.com 61.45 17703
wenku.csdn.net 73.78 17679
cn.tripadvisor.com 3.33 16790
www.eeworld.com.cn 6.95 16651
juejin.im 80.64 16261
lanxicy.com 12.86 15119
www.nbhkdz.com 48.10 14941
docs.microsoft.com 90.77 14676
www.jb51.net 57.95 14473

Table 9 | The distribution of the top websites in chinese code-like dataset
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C. Details of Code Data Pipeline

C.1. Supported Programming Languages

ada, agda, alloy, antlr, applescript, assembly, augeas, awk, batchfile, bluespec, c, csharp, clojure,
cmake, coffeescript, commonlisp, cpp, css, cuda, dart, dockerfile, elixir, elm, emacslisp, erlang,
fsharp, fortran, gisl, go, groovy, haskell, html, idris, isabelle, java, javaserverpages, javascript, json,
julia, kotlin, lean, literateagda, literatecoffeescript, literatehaskell, lua, makefile, maple, markdown,
mathematica, matlab, ocaml, pascal, perl, php, powershell, prolog, protocolbuffer, python, r, racket,
restructuredtext, rmarkdown, ruby, rust, sas, scala, scheme, shell, smalltalk, solidity, sparql, sql, stan,
standardml, stata, systemverilog, tel, tcsh, tex, thrift, typescript, verilog, vhdl, visualbasic, xslt, yacc,
yaml, zig

C.2. Workflows

The workflow of our code data pipeline is unveiled in Figure 12. We will elaborate each process in
the following sections.

Preprocessing Preprocessed
Code Data

Text Filtering

Code Filtering

Filtered Code
Data Identity Removal Fuzzy Duplication

Pretraining CorpusRaw Source Code

Figure 12 | The illustration of our code data processing workflow.

Preprocessing We exclude files exceeding 8 MB in size, as these are predominantly non-text files
that incur considerable resource overhead. Furthermore, given the miscellaneous file types present on
GitHub, we restrict our selection to files associated with 88 commonly used programming languages
(App. C.1), by only retaining those files that have a corresponding file extension.

Heuristic Filtering The quality of the original code files on GitHub exhibits significant variability,
with parts of lower quality code potentially affecting the LLM pre-training process. Referring to
RefineWeb [15], We filter the data using heuristic filters to avoid introducing undesirable biases.

Files in our source code dataset are broadly categorized two main categories: text files and code files.
For files in natural language, e.g., text and markdown files, we follow the strategy in Starcoder [70]
and only keep the files whose filename contains “requirement” or matches “readme”, “notes”, “todo”,
“description”, “cmakelists”, to remove unrelated materials. Subsequently, we apply filtering rules
similar to those used in general datasets, with minor adjustments to the quotas to accommodate the
specific needs of our code dataset.

For the code data, we use a set of specific code filters, since the characteristic of code files is
substantially different from the general texts, making general filtering rules incompatible. Besides, the
target abilities of LLM learning from general data and code data diverge significantly. Specifically, the
desired outcomes from code data predominantly focus on the model’s comprehension of code logic,
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a contrast to the broader capabilities targeted by general LLM training. Founded on the principle
applied to phi-1 [71], we have developed our filtering criteria based on the following insights: 1)
Filter out files with poor self-containment; 2) Filter out files with little or poor code logic; 3) Filter out
files with non-standard formatting. Based on these foundational insights, we establish three primary
categories of rules that are delineated as follows.

Natural Language Filtering Rules: Natural language filtering rules inherit a part of the filtering rules
utilised in general data processing pipeline, which overlap with those filters displayed in section
2.1.1 to some extent, such as removing files with excessively repetitive text and files with low letter
proportions. This category of rules addresses the fundamental text quality criteria that are applicable
to both general textual content and code, ensuring a baseline standard of data integrity across
different file types.

Code Filtering Rules: Code filtering rules are specifically designed to address the common characteristics
of various programming languages. Drawing upon filtering rules introduced in StarCoder V2 [30],
we have developed a new suite of rules with more comprehensive code analysis, such as filtering out
files with a high proportion of long strings or excessive number of hexadecimal constants.

Code-specific Filtering Rules: Code-specific filtering rules are devised based on the different pro-
gramming languages. We have developed specific filtering rules tailored to these eight selected
programming languages: Python, C, C++, C#, Java, JavaScript, Go, and HTML, which are commonly
used or have high data proportions. For instance, we exclude Python files that contain an excessive
proportion of ”import” statements and C files that excessively use ”goto” statements, aiming to
eliminate low-quality code data specific to these predominant programming languages.

Deduplication The purpose of deduplication is to construct an unbiased and diverse training
set while significantly reducing the data volume. We adopt an aggressive file-level deduplication
strategy, since we found file-level deduplication outperforms repo-level version significantly. Owing
to the extremely high repetition of the code dataset, we leverage both identity removal and fuzzy
deduplication methods to eliminate documents containing identical or near-identical code content
shown as follows:

Identity Removal: Due to the prevalence of forking and copying within the codebase, almost 90% files
are completely duplicated. On account of this, identity removal is applied towards code data at the
first step in this module. We compute the SHA256 hash value for each document and keep those with
the highest star count and the latest commit time when the hash values collide.

Fuzzy Deduplication: Following the fuzzy deduplication setting in general data pipeline, we split raw
text into 5-gram pieces, and then calculate the 2048 minhash functions [11]. Additionally, we utilize
LSH [12] to retain only those distinct files with highest stars and latest commit time. This process
removes 6% file volume.

C.3. Quality Verification

To demonstrate the efficacy of our code pipeline, we train a 1.5b code LLM up to 550B tokens using
only our processed code data compared with using the source code data from the stack v2 [30]. The
comparison of the training loss between the two models, as well as the evaluation metrics (HumanEval
Pass@1 and MBPP Pass@1) during the training process, are presented in the Figure 13, Figure 14 and
Figure 15. From these figures we find that LLM pretraining on our processed code has a significantly
training loss and higher evaluation metrics, indicating that our code dataset outperforms the stack v2
in both diversity and quality.
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Figure 13 | The comparison of the training loss between using our code dataset and the Stack v2.

Figure 14 | The comparison of HumanEval Pass@1
between using our code dataset and the Stack v2.

Figure 15 | The comparison of MBPP Pass@1 be-
tween using our code dataset and the Stack v2.

In the ongoing development of the code data processing pipeline, we aim to create a more compre-
hensive and robust iteration in the near future. This enhanced version will encompass a broader
spectrum of code data and feature more refined data processing techniques. Due to current time
constraints, the entire pipeline code, along with the processed, high-quality code data, will be made
publicly available in our forthcoming work, which will specifically address advancements in code LLM.
We expect that these contributions will significantly benefit the open-source code LLM community.
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Figure 16 | The basic instruction prompts generation pipeline used for all prompts generation. Starting
with the collection of initial prompts, we enhance these through instruction augmentation. We then
apply intermediate models and ICL techniques to generate outputs. These outputs are combined
by the intermediate model to create new candidate responses. Annotators then rank all candidate
responses, including reference ones, and make necessary revisions to finalize the instruction data.

D. Prompt Preparation

Multiple open source datasets are available for LLM instruction fine-tuning [72–74]. However, merely
aggregating these datasets can lead to significant variations in quality and quantity in different
instructional tasks. This variation often results in unbalanced behaviors, including an increased
incidence of hallucinations in model responses. To address this, our approach in prompt preparation
emphasizes the creation of high-quality and diverse prompts and aims to enhance the generalization
capabilities of LLM across a variety of tasks.

Measurement of Data Quality: Improving the data quality of instruction data is one of the most
effective and imperative way to improve the SFT performance for both general chat capability and
domain-specific tasks. However, key challenge lies in accurately measuring and assessing the quality
of instruction data, which is essential for subsequent effective prompt generation and verification.
To address this, we propose two indicators to measure the quality of prompts. The first indicator
assesses textual quality, identifying issues such as truncation, formatting errors, language inconsistency,
irrelevant content, unsafe material, non-compliance with user instructions, and unnecessary repetition.
The second indicator evaluates the helpfulness of responses, focusing on their authenticity and
accuracy. It ensures that responses are in the standard assistant form, and are free from misleading or
contradictory information, incorrect assumptions, or biases about the user. Furthermore, it also prefer
the response prompts that are not exhibit human-like characteristics such as personality, emotions,
or preferences, nor claim real-life actions when not role-playing. Additionally, it also evaluate the
provided code text to ensure that all contents are correctly formatted using markdown.

Measurement of Data Diversity: The diversity of instruction data is crucial for enhancing a model’s
ability to generalize across various tasks and follow instructions effectively. Our approach focuses
on two key aspects of diversity: task distribution and data distribution. Task distribution refers to
the segmentation of instruction tasks. To analyze and enhance task distribution diversity, we have
developed a dual categorization system. This system includes a three-tiered topic categorization and
a separate instruction categorization to organize the instruction data systematically and monitor task
distribution trends. On the other hand, data distribution pertains to the textual characteristics of the
instructions themselves, encompassing both the format and stylistic elements of the text. Our findings
suggest that a thoughtfully designed task distribution can effectively balance between generality and
specialization. Moreover, a diverse data distribution significantly reduces hallucinations and promotes
the learning of invariant semantic features [75, 76] in SFT.
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Initial Prompts Generation: Following the LIMA [50], we fist construct around 3K preliminary high
quality instruction data based on the LIMA data distribution completely annotated and examined
by all authors. Then, we perform SFT on this dataset and acquire the intermediate model for initial
prompt generation. We initiate the prompt development process by collecting single-turn prompts
from open source projects like Dolly [77] and COIG [78]. These prompts are categorized into nine
types: creative writing, cloze QA, open QA, summarization, information extraction, classification,
brainstorming, coding, math & reasoning, and few-shot instructions. Given the varying quality of
data sources, we’ve designed a two-stage process to enhance prompt quality. In the first stage,
we employ both intermediate model and the base model with in-context learning to create initial
prompts [79–82]. Subsequently, we use chat-based intermediate model to refine these prompts by
integrating and improving upon provided reference answers. In the second stage, we compile all
refined responses and engage a team of human annotators to rank these responses and select the
highest quality ones according to established data quality standards. Through several annotation
experiments, we’ve identified two critical factors for improving annotation quality: allowing each
annotator to specialize in a single category of instruction data, and prioritizing data selection and
ranking over direct annotation. This approach not only enhances efficiency but also yields better
results. Employing this comprehensive prompt generation process, we have successfully produced
approximately 100K high-quality, single-turn general instruction prompts. By using these part of
instruction data, we perform the initial SFT on our base checkpoint and utilize this model as the
initial model for subsequent instruction data production.

System Prompts Generation: In order to enhance our model’s capacity to perform diverse tasks and
role-play in accordance with system prompts, we independently generated 15k of instruction data with
system prompts. Compared with the instruction prompts we introduced in the previous part, system
prompt can be considered as a universal instruction that can influence the entire dialogue. Specifically,
to acquire a range of high quality and diverse system prompts, we filtered web pages using keywords
and extracted prompts from the Common Crawl6 data using chat-based intermediate model. Most of
these system prompts were real prompts shared by users on social media platforms for their agents,
spanning categories like role-playing and text adventure games. We initially gathered approximately
1.5k system prompts. To further diversify our model’s adherence to these prompts, we perform
data augmentation to enrich the formats which are commonly used by humans in crafting system
prompts, including second-person narratives (e.g., ”You are a..., your task is...”), Markdown, and
YAML. Moreover, since the prompts sourced from the Common Crawl were predominantly in English,
we than translated all non-Chinese prompts into Chinese and invite our annotation group to perform
data selection following the aforementioned data filtering standards, resulting in approximately 15K
instruction data with system prompts in various formats and languages.

Dialogue Generation: To further improve the LLMs dialogue and system prompt capabilities in
controlling global dialogue information, we independently construct our dialogue instruction data
within and without system prompts. We engaged trained annotators who initiated dialogues based
on the system prompts and provided first instruction prompts, asking specific questions about the
details within these prompts. Similar to the single turn instruction prompt generation, we sample the
responses from intermediate models and our previously SFT checkpoint. After that, human annotators
then rank the response, refine these responses to ensure higher quality, and repeat this process to
continue with multi-turn dialogues. Due to the high work load of dialogue generation by annotators,
we also incorporated synthetic data generation process [83, 84], employing an independent instance
of intermediate model as the users, who engaged in multi-turn dialogues according to the system
prompts, simulating real human interactions. We ultimately compiled about 20k multi-turn dialogues
with half of them have system prompts.

6https://commoncrawl.org/
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Instruction Augmentation: In our previous work, we developed a method to generate a variety of
prompts for SFT. Despite these advancements, the model struggles with following complex instruc-
tions. To enhance its ability to understand and generalize instructions, we introduced an instruction
augmentation process aimed at creating more complex prompts. This process begins by categorizing
instructions into nine distinct types, without considering the topic information in the text: informa-
tion retrieval, creativity, comparison/contrast, causality/relationship, logical reasoning, conditional,
semantic understanding, restrictive, and sequential compound instructions. It is common for a single
data point to encompass multiple instruction types. Unlike other research that employs a universal
approach to instruction augmentation using identical prompts, our method tailors the augmentation
to the specific type of instruction task with intermediate models. However, we observed that the
quality of instructions generated synthetically was inferior to those crafted by humans. Consequently,
we engaged our annotation team to refine these instructions. Following these revisions, we proceed
with prompt production using our aforementioned data pipeline.

Data Preparation for Agentization: In supporting domain-specific applications, we discovered that
agentizing LLMs is crucial for achieving accurate responses in complex practical scenarios. In the
SFT stage, agentization involves preparing intention identification and tool utilization prompts. We
developed four tool types for this purpose: search engines, text-to-image generation, image-to-text
generation, and self-cognition, accessible via API. Each tool’s input and output are managed in text,
using special tokens to demarcate the start and end of API interactions, mimicking a textual sequence.
This method, inspired by Toolformer [85], involves three steps: initiating the API call with a special
token and relevant parameters, receiving the API’s textual response, and generating the final model
response based on this data. To further improve the intention recognition capability through SFT, we
also prepare specific prompts through data backflow from applications and totally produce around
10K entries through our data pipeline.

E. ChatML Template

Similar to the approaches in related works [49, 86–89], we developed the Chat Markdown Language
(ChatML) template to distinctly categorize system prompts, user prompts, and assistant prompts.
This templating approach ensures uniformity across all subsequent instruction learning and inference
scenarios, promoting consistent interaction behavior. The details of ChatML are presented in Table
10.

ChatML template for Infml’s instruction learning
<|start|>system
{AGAB4;_>@=;>B}<|end|>
<|start|>user
{CA4@_>@=;>B}<|end|>
<|start|>assistant<|message|>{0AA7AB0<B_>@=;>BA}<|end|>
<|start|>user
{CA4@_>@=;>B}<|end|>
<|start|>assistant<|message|>{0AA7AB0<B_>@=;>BA}<|end|>

Table 10 | ChatML template for two turns dialogue with system prompts. The {AGAB4;_>@=;>B},
{CA4@_>@=;>B}, and {0AA7AB0<B_>@=;>BA} represent the placeholders for system prompts, user prompts,
and assistant prompts.

In cases where the instructional data lacks system prompts, we utilize only the user and assistant
components of the ChatML template. During inference, users have the option to either incorporate
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system prompts using the default setting: ”You are a helpful assistant.” or to simply merge the user
and assistant segments for straightforward instructional interactions.

F. Long Context Data Sources and Tasks

F.1. Data Sources and Processing

Arxiv Arxiv is an academic preprint platform that collects papers from fields such as mathematics,
physics, and computer science, covering a wide range of topics. Texts on Arxiv typically adhere to
specific structural norms, making it crucial for large language models to learn to extract information
and understand the semantics embedded within these structures. We downloaded recent papers
along with their corresponding LaTeX source files from Arxiv. Our first step involved extracting the
core content of the articles from Latex source files. Subsequently, we conducted hierarchical extraction
of the main content based on specific keywords (e.g., abstract, section, chapter). This process enabled
us to organize the main body of text into structured formation. Following this, we filtered out papers
where the main content was less than 512 tokens or did not include the methodology part after
hierarchical extraction. Finally, the extracted content was then saved in JSON format for further
processing and analysis.

Science Fiction Science fiction novels typically involve futuristic technologies, extraterrestrial life
forms, supernatural phenomena, and other elements requiring high levels of imagination and complex
worldviews. Models can enhance their reasoning abilities by understanding the internal logic of
these narratives, while the complexity of the plots can improve the models’ capacity for multi-
layered information processing. We downloaded a collection of science fiction novels from 4675-scifi.
Initially, we utilized regular expressions to remove watermarks interspersed within the novel texts.
Upon inspecting the novel contents, we identified redundant information unrelated to the core
narrative at the end of some original novels, which we manually deleted. Subsequently, we employed
regular expressions and specific chapter keywords to segment the novel contents into chapters. After
segmentation, we filtered out novels lacking complete chapter content to ensure the integrity of the
final novel contents. Finally, we saved the segmented content in JSON format, organized by chapters.

Reddit Dialogue The Reddit platform hosts a wealth of user-generated content including dialogues,
comments, and responses, which are commonly employed in natural language processing tasks
such as dialogue generation, sentiment analysis, and topic classification. We extracted a significant
volume of raw Reddit data from online sources, specifically targeting dialogues that exceed 128
tokens in length. This dataset serves as the foundational corpus for generating multi-turn dialogues
in subsequent phases of our research.

Financial Reports and Comments Financial reports and their corresponding commentary data cover
multiple industries and companies, as well as various financial and business metrics. This diversity
and complexity contribute to enhancing the generalization capability and adaptability of models
trained on such data across different contexts. The intricate syntactic structures and deep contextual
dependencies present in these datasets enable models trained on them to handle complex sentence
structures, multiple modifiers, and long-distance dependencies, thereby improving the models’ ability
to understand and generate lengthy texts. We downloaded a large volume of financial data and
corresponding financial report commentaries from the CNINFO website. Recognizing potential
discrepancies between commentaries and financial reports, we initially employed intermediate
version of INF-34B-32K model trained on open source long context datasets to remove portions from
the commentary that are not present in the financial reports. Subsequently, we conducted manual
checks to ensure that the remaining commentary information is consistent with the content found in
the financial reports.
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Open Sources Long Context Dataset We also integrated several open-source long-text datasets such
as LongAlpaca[90], LongAlign[91], anti-haystack[92], etc. For these datasets, we initially selected
appropriate segments based on their length and conducted random sampling checks to identify
redundant characters that could potentially degrade text quality. Subsequently, we employed regular
expressions to systematically traverse the content and eliminate any adverse effects identified during
the sampling process.

F.2. Task Diversity

Summarization Based on financial reports and commentary data, we constructed a dataset akin
to an summarization task. The query component involves specific content from financial reports,
prompting an analytical critique of the report. The answer section is composed of information that
has undergone manual quality assurance and is fully traceable within the financial reports.

Multi-Turn Dialogues For English dialogues, we utilize preprocessed Reddit data as described above
and employ INF-34B to select conversation content involving two individuals. These conversations
are used respectively as references for the dialogue between a User and an AI Agent, constituting
a dialogue exchange between them. The User’s dialogue strives to adhere closely to the original
conversation content, introducing additional information outside the original context if necessary to
clarify ambiguous references and prevent misinterpretations. The AI Agent’s dialogue may selectively
draw from the original content while maintaining characteristic traits such as helpfulness, honesty,
harmlessness, and truthfulness.

For Chinese dialogues, we directly generate using INF-34B. Initially, different roles are assigned to
the model, representing entities with knowledge or experience in various domains. Suitable prompts
are used to generate the first line of dialogue for both the User and AI Agent, termed as the ”hook”.
Finally, based on the hook and the background of each role, appropriate templates are applied to
generate a complete dialogue between the User and the AI Agent (in its respective roles).

Multiple Information Retrieval Based on financial reports sourced from the CNINFO website, we
utilized intermediate version of INF-34B-32K to construct datasets tailored for extraction tasks. These
tasks encompassed the extraction of specified financial data types from the content of financial reports,
extraction of the narrative structure of entire financial reports, and tasks aimed at extracting content
for financial trend analysis from the reports. Following the construction of these datasets, a rigorous
manual verification process was conducted to ensure that the extracted content accurately corresponds
to the information present in the original financial reports. The subsequent manual inspection phase
served to validate that the extracted data aligned faithfully with the corresponding sections of the
source financial reports, thereby affirming the reliability and fidelity of the constructed dataset for
subsequent analytical and model training purposes.

Question-Answer We utilized preprocessed contents of ArXiv articles to construct various types
of question-answer tasks. These included numerical response questions, opinion-based questions
requiring judgments based on the content, and multiple-choice questions based on content(potentially
containing multiple correct options). For questions where the correct answer is numerical, we
employed intermediate version of INF-34B-32K to generate corresponding questions and answers
based on the original content. Subsequently, manual verification was conducted by searching for the
answers within the original content to ensure accuracy.

For opinion-based questions derived from content, intermediate version of INF-34B-32K generated
both correct and incorrect conjectures about the given content. During the data construction phase, a
random selection was made between these conjectures for each Arxiv article.
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Regarding multiple-choice questions, we extracted factual information from the abstract sections of
corresponding articles. Using both the extracted abstract facts and the main body of the articles, we
utilized intermediate version of INF-34B-32K generated multiple-choice questions.

Comprehension and Reasoning We filtered out books from the preprocessed ArXiv dataset and
merged them with the collection of science fiction novels. Using intermediate version of INF-34B-32K,
we generated question-answer pairs based on multiple chapters, requiring that correct answers derive
from understanding across at least two chapters rather than relying solely on a single chapter. By
focusing on questions where correct answers necessitate insights synthesized from multiple chapters,
we aim to develop datasets that reflect nuanced comprehension and contextual integration in textual
analysis tasks.

G. Quantization Results

GPTQ and AWQ are Post-Training Quantization (PTQ) methods that save memory and provide
potential speedups while retaining the model’s accuracy. To run GPTQ or AWQ, we use [Au-
toGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) and [AutoAWQ](https://github.com/casper-
hansen/AutoAWQ). Additionally, the Hugging Face transformers library has integrated Optimum to
perform quantization on language models. We provide quantized models in three formats: GPTQ4bit,
GPTQ8bit, and AWQ4bit.

Performance Benchmark

Table 11 presents performance of our bf16 model and quantized models (including GPTQ-Int4,
GPTQ-Int8, and AWQ-Int4). Specifically, we report the inference speed (tokens/s) and memory usage
(GB) under different context length conditions. All results are measured on a web service launched
on a single GPU using vLLM.

Quantization Parallel Total Requests Total Time (s) Total Prompt Total Output Average Prompt Average Output Avg ttft (ms) Avg Tokens/sec
BF16 1 8 55.24 7656 1116 957.0 139.5 294.19 21.16
BF16 2 16 55.20 15312 2055 957.0 128.44 346.44 19.85
BF16 4 32 65.36 30624 4242 957.0 132.56 392.19 17.77
BF16 8 64 78.51 61248 8416 957.0 131.5 482.47 14.82
BF16 16 128 102.41 122496 16718 957.0 130.61 650.55 11.13
BF16 32 256 179.99 244992 33189 957.0 129.64 7392.42 9.11
AWQ 4bits 1 8 36.56 7656 1116 957.00 139.50 469.96 34.16
AWQ 4bits 2 16 39.12 15312 2055 957.00 128.44 515.20 29.76
AWQ 4bits 4 32 50.93 30624 4242 957.00 132.56 574.12 23.73
AWQ 4bits 8 64 70.06 61248 8416 957.00 131.50 695.86 16.95
AWQ 4bits 16 128 106.45 122496 16718 957.00 130.61 925.55 10.79
AWQ 4bits 32 256 189.00 244992 33189 957.00 129.64 1394.61 5.94
GPTQ 4bits 1 8 23.95 7656 1116 957.00 139.50 339.06 52.89
GPTQ 4bits 2 16 28.60 15312 2055 957.00 128.44 370.04 40.63
GPTQ 4bits 4 32 39.99 30624 4242 957.00 132.56 420.13 29.96
GPTQ 4bits 8 64 65.86 61248 8416 957.00 131.50 531.12 17.63
GPTQ 4bits 16 128 119.64 122496 16718 957.00 130.61 739.55 9.38
GPTQ 4bits 32 256 226.12 244992 33189 957.00 129.64 1151.64 4.87
GPTQ 8bits 1 8 34.48 7656 1116 957.00 139.50 343.56 35.31
GPTQ 8bits 2 16 36.10 15312 2055 957.00 128.44 384.82 31.55
GPTQ 8bits 4 32 53.00 30624 4242 957.00 132.56 438.40 22.14
GPTQ 8bits 8 64 86.73 61248 8416 957.00 131.50 551.20 13.21
GPTQ 8bits 16 128 159.62 122496 16718 957.00 130.61 776.12 6.96
GPTQ 8bits 32 256 234.27 244992 33189 957.00 129.64 1163.31 4.73

Table 11 | Quantization Performance Metrics

Generation Results of Quantized Models

Table 12 reports the generation results of quantized models, including both GPTQ and AWQ. All
models were evaluated using greedy decoding.

Testing Environment
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Quantization MMLU CMMLU C-Eval ARC-c GSM8K
BF16 76.45 81.26 82.29 90.17 84.08

GPTQ-Int4 75.16 79.57 79.47 89.49 82.49
GPTQ-Int8 76.63 81.28 82.23 91.19 84.61
AWQ-Int4 75.59 80.15 80.90 90.51 83.78

Table 12 | Generation Results

• NVIDIA A100 80GB
• CUDA 12.1
• Pytorch 2.3.0+cu121
• Flash Attention 2.5.0
• Transformers 4.42.4
• AutoGPTQ 0.8.0
• AutoAWQ 0.2.5
• vLLM 0.3.3

H. OpenCompass Evaluation

OpenCompass [5] is a flexible and efficient evaluation framework that users can easily install and
utilize. This tool provides a comprehensive environment for assessing the performance of large models
across various tasks. In our study, we employed OpenCompass to evaluate several common Natural
Language Processing tasks. The detailed test results 7 are presented in Table 13 and Table 14. This
evaluation serves as a reference point for comparing model performance.

7Please visit https://github.com/infly-ai/INF-LLM for more details.
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Qwen1.5-32B-Base Yi1.5-34B-Base INF-34B-Base
Exam

C-Eval 82.91 83.06 80.75
AGIEval 59.28 56.24 55.19
MMLU 73.78 77.70 76.11
CMMLU 82.43 83.67 80.08
GAOKAO-Bench 84.26 63.68 60.89
ARC-c 90.17 94.58 90.17
ARC-e 94.89 97.35 96.30

Knowledge
BoolQ 88.50 87.80 87.06
CommonSenseQA 73.46 71.74 70.93
TriviaQA 65.81 68.60 68.93
NaturalQuestions 8.56 14.99 37.81

Understanding
C3 96.38 92.11 94.14
RACE(Middle) 93.59 94.64 92.13
RACE(High) 89.79 85.45 87.59
OpenbookQA 93.60 89.40 93.80
CSL 62.50 61.88 66.25
LCSTS 17.99 16.77 17.48
XSum 21.46 42.46 41.31
EPRSTMT 91.25 88.75 91.25
LAMBADA 73.80 72.02 75.63

Reasoning
CMNLI 61.15 52.59 58.03
OCNLI 59.02 49.56 54.24
AX-b 57.52 58.61 43.75
AX-g 85.39 82.58 75.84
RTE 55.23 74.01 66.79
COPA 98.00 97.00 99.00
ReCoRD 31.61 70.96 62.89
HellaSwag 81.90 81.39 83.32
PIQA 81.72 81.88 81.61
SIQA 76.41 79.02 77.74
MATH 38.40 33.90 38.84
GSM8K 73.54 79.45 83.02
BBH 70.50 75.15 71.20

Table 13 | Evaluation results of base models using OpenCompass.
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Qwen1.5-32B-Chat Yi1.5-34B-Chat INF-34B-Chat
Exam

C-Eval 81.21 81.65 82.29
AGIEval 58.45 60.04 61.10
MMLU 75.09 75.93 76.45
CMMLU 80.17 80.40 81.26
GAOKAO-Bench 86.43 71.93 74.88
ARC-c 82.37 92.88 90.17
ARC-e 90.30 95.94 96.47

Language
WiC 68.50 64.26 67.87
CHID 89.11 81.68 83.66
AFQMC 73.24 73.08 72.24
WSC 80.77 70.19 68.27
TyDiQA 40.00 20.31 37.82

Knowledge
BoolQ 88.69 90.64 89.51
CommonSenseQA 87.55 86.49 85.50
TriviaQA 64.20 67.84 71.53
NaturalQuestions 33.91 33.57 37.09

Understanding
C3 95.89 95.01 94.36
RACE(Middle) 93.59 91.71 92.83
RACE(High) 91.31 88.82 89.37
OpenbookQA 92.60 94.20 95.00
CSL 53.75 53.75 50.00
LCSTS 18.92 12.91 15.30
XSum 29.54 21.16 23.66
EPRSTMT 91.88 91.25 90.62
LAMBADA 62.08 67.30 68.31

Reasoning
CMNLI 62.76 63.64 62.11
OCNLI 60.54 60.14 59.19
AX-b 68.57 75.09 60.33
AX-g 91.57 92.70 85.39
RTE 79.06 85.92 75.45
COPA 100.0 100.0 100.0
ReCoRD 44.77 9.22 65.35
HellaSwag 86.67 85.98 88.98
PIQA 86.45 88.14 84.39
SIQA 69.14 60.54 77.23
MATH 42.28 54.06 51.48
GSM8K 81.43 79.45 84.08
BBH 70.81 74.80 72.67

Table 14 | Evaluation results of chat models using OpenCompass.
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